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Abstract

The multigrid waveform relaxation (WR) algorithm has been fairly stud-

ied and implemented for parabolic equations. It has been found that the

performance of the multigrid WR method for a parabolic equation is practi-

cally the same as that of multigrid iteration for the associated steady state

elliptic equation. However, the properties of the multigrid WR method for

hyperbolic problems are relatively unknown. This paper studies the multi-

grid acceleration to the WR iteration for hyperbolic problems, with a focus

on the convergence comparison between the multigrid WR iteration and the

multigrid iteration for the corresponding steady state equations. Using a

Fourier-Laplace analysis in two case studies, it is found that the multigrid

performance on hyperbolic problems no longer shares the close resemblance

in convergence factors between the WR iteration for parabolic equations and

the iteration for the associated steady state equations.
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1 Introduction

The advent of a new generation of massively parallel computers, consisting

of hundreds or thousands of processors, has caused previously unattrac-

tive numerical algorithms to be reexamined. For a numerical algorithm

to fully exploit the power of such machines, it must be decomposable into

largely independent pieces which can be distributed among the available

computer processors. The waveform relaxation (WR) method (or dynamic

iteration method), originally proposed for VLSI-simulation [8] [12], is such

a method for solving systems of ordinary differential equations (ODEs) and

time-dependent partial differential equations (PDEs). It decomposes a full

system into smaller subsystems which can be solved concurrently. Addition-

ally, it allows different integration step sizes to be used for different subsys-

tems, resulting in substantial savings in computation for some applications

[7] [10] [13] [14] [15] [19].

Many studies on the WR method and its acceleration techniques have

been made on parabolic problems [4] [6] [9] [16] [17]. In those studies, an im-

portant approach has been to establish a quantitative comparison between

the WR iteration for time-dependent PDEs and the associated iteration for

the corresponding steady state problems, called static iteration, since the

latter has been extensively investigated. The studies have found that, for

parabolic problems, the convergence rates of the WR iteration and static

iteration are quantitatively quite close [11]. When a multigrid technique (in

space) is incorporated into the WR method, the typical multigrid accelera-
tion can be achieved with a rate that is a small perturbation from the one

for the associated static multigrid iteration [9] [16]. Therefore, the result-

ing multigrid WR method significantly increases the speed of convergence

in solving parabolic problems, making it competitive with the traditional

time-stepping methods.

For hyperbolic systems, the WR method has been shown to be concep-

tually similar to the semi-discrete subdomain iteration and share the same

convergence properties as for parabolic problems [1]. Therefore, it is natural

to consider a multigrid acceleration to the WR iteration because the tech-

nique has been effectively used for solving non-elliptic steady state problems

[3]. For certain classes of non-elliptic steady state problems, the multigrid

technique has substantially improved the speed of convergence. Since it

can be adapted into the WR method for solving time-dependent hyperbolic

PDEs in the exact same format, a question is raised about whether its per-

formance is still analogous to its steady state counterpart as reported by



Brandt [3].
Thispaperaddressestheissueofperformancedifferencesofthemultigrid

WR methodonparabolicand hyperbolicproblems.It studiestheconver-
gencefactorsofthemultigridWR methodforproblemswhosespaceoperator
is not elliptic, or in whichtheelliptic principalpart of its spaceoperatoris
small. Manyproblemsin fluid dynamics,and in other fields,areof these
types.TheFouriermethodwasshownto bea powerfultool for convergence
analysisof numericalschemesfor thesetypesof problems[3]. In thispaper,
a Fourier-Laplaceanalysis,i.e.,Fourieranalysisin spaceandLaplacetrans-
form in time, is usedin two casestudiesthat involvehyperbolicequations.
Interestingphenomenawereobserved.In particular,it wasfoundthat for a
hyperbolicequation,themultigridWR iterationcouldfail to convergewhile
its static analogueworkswellon the associatedsteadystateproblem.

2 Fourier-Laplace Analysis

The Fourier method is an indispensable tool for analyzing both differential

equations and discrete solution methods for time-dependent problems. It is

especially powerful for the convergence analysis of multigrid iteration, be-

cause it provides insight into the details of the basic interaction between

the coarse grid correction and fine grid relaxations. For steady state model

problems, comprehensive Fourier analysis has been developed [2] [18]. For a

parabolic model problem, the practical convergence estimates of the multi-

grid WR iteration were obtained by a Fourier-Laplace analysis [16]. In this

paper, such analysis is used in two case studies that involve hyperbolic equa-
tions formulated as

_U

cO--_+ Lu = f, t > O, u(t = O) = Uo, (1)

with periodic boundary conditions. L is an m-dimensional linear operator

with constant coefficients defined in an infinite space. In order to employ a

multigrid WR iteration to (1), the equation is first discretized in space

dub
d--7-+ LhUh = A, t > 0, Uh(0) = Uo, (2)

where Lh, Uh, and fh are discrete approximations to L, u, and f obtained

by spatial finite differences. Then the multigrid WR iteration is applied to

(2) with h as the finest grid size. Our analysis is restricted to a two grid

WR cycle described as follows.



1. Let Lh be split as Lh = M - N. Perform v1 pre-smoothing steps:

dU(h_)+Mu_} = Xu_'-a)+fh,
dt

t > O, u_')(O) = Uo, v = 1,2," "',Vl;

where the starting function U(h°) is given.

2. Restrict the defect from grid h to grid H:

d u (_ )
dh :---- d-'-"_ "_ ihu(Vl) - fh, dH := IHdh. (3)

3. On the coarse grid, solve

dwH
+ LHWH = dH, wH(O) = O.

dt

4. Correct

Uh -- U(Vl)-- IhwH

where I_4 is a suitable interpolation from grid H to grid h.

5. Perform v2 post-smoothing steps on iih.

The error of a complete two grid WR cycle described above satisfies

e(h i) ---- Ve (i-1), e_i)(0) -- 0, (4)

where V is the two grid WR iteration operator. The Laplace transform of

(4) is

= R (z) _>0, (5)

with

and

V(z) = (6)

CG(z) = I- Ih(z + LH)-IIH(z + Lh). (7)

The matrix functions CG(.) and S(.) are the Laplace transforms of convo-

lution kernels of the coarse grid corrector and the smoother respectively.

Note that CG(0), S(0) and V(0) are respectively, the coarse grid correction,

smoothing and two grid iteration operators for the corresponding steady



stateproblemLhUh = fh. A detailed derivation of (6) and (7) can be found

in [9].
Assuming that all the entries of V(z) are rational functions of z vanishing

at infinity with poles having negative real parts, and taking V as an operator

on LP(R+,C '_) (l < p < _), the spectral radius p(V) = limk--._ ][12k[[:/k

satisfies (see [9])

p(l;) = max p(V(z)) = max p(V(z)).
Rez>O Rez=0

(s)

Since the multigrid technique is used in space only, the convergence estimate

of the multigrid WR iteration can be obtained by performing a Fourier

analysis on each of equations (5).

Let ]-I denote the max-norm in C TM (note, m is the dimension of the

PDE (1)). Define the frequency

: (01 02,...,02rn), oJ = (_l'''''oJ) _" crn,

where
7f

1011-< 2' 1oil <_randO j =0:+II j, j=2,---,2 m,

in which, H j := rr(ia, i_,.. ",ira), ik = 0 or 1, and at least one of ik's equals

1. The exponential Fourier mode on h grid

exp(iOJx/h), x G C TM,

is an infinite dimensional vector determined by the grid points, and appears

as the mode exp(i20_x/H) on H = 2h grid. Therefore, on H grid, it co-

incides with all Fourier modes exp(iOJ'x/h), j' = 1,..., 2TM, j_ _ j. Thus,

restriction operators introduce coupling between each lower mode 81 and its

(2 m- 1) high frequency harmonics 9J, j = 2,---, 2TM- Interpolation operators

introduce coupling among the same modes. This can be represented as

IHexp(iOJx/h) = ]H(OJ)exp(i20:x/H), j = 1,...,2 m, (9)

and
2 m

Ih exp(i20'x/H) = E ]h(OJ)ezp(iOJz/h)"
j=l

If the set of Fourier modes in h and H grid are denoted by

(lO)

Xh(O) = [exp(iO'x/h),--.,exp(iO2mx/h)] and XH(O:) = [exp(i2OIx/H)],



the equation(9)-(10)canbewritten as

IHa'h(O) = XH(01)ihH(0), lhH(0) = [ h'[]H[01']'''"IH(O2m)]'

and
ib(o')

IhX.CO 1) = Xh¢O)ih(O), ib(e)=
ih(o 2m)

The matrices ]if(O) and I_/(0) are called the matrix symbols of Iff and I_

respectively. In this paper, the symbol of a matrix A will be denoted by

A(0).

If the operators Lh and LH, and the smoother in Laplace domain. S(z) do

not introduce coupling of more Fourier modes, then the set of 2TM harmonic

modes Xh(O) is an invariant subspace of iteration operator V(z) satisfying

V(z)Xh(O) = Xh(8)V(8, z) for all 0,

where the matrix symbol of V(z) has the form

(7(0, z) = SV2(O, z)[I-]h(O)(Z+LH(20))-llH(O)(z+Lh(O))]SV'(O, z), nez > O.

The spectral radius of V(z) can then be obtained by collecting its value on
each set of 2 m Fourier modes

p(V(z)) = supp(V(0, z)) = max p(_'(0, z)).

Combining (8), the asymptotic convergence rate of the two grid WR iteration

can be calculated by

p(Y) = max max p(V(O,z)). (11)
Rez=010al< {

3 Case Studies

In order to assess the multigrid performance on hyperbolic equations, it is

useful to start from the case study on the model hyperbolic equation

ut + au_: + buv = f. (12)

A wide class of discretization methods for equations of the above form, even

in the context of a system of PDEs, involves central differencing of the



originalequationwith an additionalterm which is usedfor stabilization.
This additional term, called artificial viscosity, may be of different order

and usually corresponds to a discretization of elliptic operator times a small
coefficient. Here, two such discretization schemes are chosen for the case

studies• The analysis of these schemes are done using First Differential

Approximation (FDA)[3].

Case 1. Consider the equation

ut + aux + buy - h_Au = f

with given initial condition and periodic boundary condition• This is the

FDA for the following discretization of (12):

b/2 -13 ]
1 -a/2 - _ 413 a/2 - t3

Lh := _ -b/2-

Note, Lh is a first order discretization to a O + b_-_y. The matrix symbol of

Lh is

Lh(_ 1 )

, x=(_,e_), j=l,...,4,

Lh(e4)

(13)

with

h

The matrix symbol of the coarse grid operator is

LH(2O) = [LH(281)]. (14)

Let the bi-linear interpolation be chosen for I h and the restriction operator

be I H = (Ih) T. Their matrix symbols are given by

]h(e) = []H(o1),---,]_(e4)] T and I_(e) = (/hH(e))T,

with

1+ cos_)(1 + coseJ2), j = 1,.-.,4.i_(X) = ( 2 2

6



Symbolsfor the dampedJacobiand red-blackGauss-SeidelWR smoother

_j(0, z) =

are found to be

_(04, z)

(15)

S(O j,z) - 1 d = --if ,43zw+d(d-wLh(OJ))_ 0<a;_< 1, j = 1,...,4;

_cs(O,z)=[_A(o,z) o ]o _s(o, _) '

SA(O,z)=_ 1-A -(l-A) 2- 1-B -(l-B) '

A : 2_(_o_01+ _o_0_) - i(_inO1+ b_inO_)
4/3 + zh

B = 2/3(-cos01 + cosO_) - i(-asinO 1 + bsinO_)
4/3 + zh

Tables 1 and 2 hst the computed spectral radii of the two grid WR

operators for the damped Jacobi relaxation and Red-Black Gauss-Seidel

relaxation based on (11). The number of smoothing steps is chosen as v =

vl + v2 = 1. For a comparison, using the same number of sample points for

the space variables, the computed spectral radii of the related two grid static

iteration operators are listed inside parentheses. These data show that the

performance of the two grid WR iteration on this problem is quantitatively

quite close to its static analogue, a phenomenon that has been observed and

theoretically justified for parabolic problems.

Table 1: Spectral Radius of Two Grid Damped Jacobi WR (w = 2/3, b = 1)

a _=.4 /_=.5 _'=.75 /3=1.

1.0 .8416 (.8357) .7086 (.7001) .6072 (.5816) .5887 (.5644)

0.5 .7644 (.7480) .7509 (.7151) .7815 (.7298) .7992 (.7789)

0.0 1.0 (1.0) .9999(.9999) .9999(.9999) .9999 (.9999)



Case 2. Next, consider a third order approximation of (12), for which

the FDA is

ut + aux -F buy + h3_A2u = f,

i.e., the operator a _zx+ b°--0yis approximated by

/3
2_ -8/3 + b/2 2/3

_ -8/_ - a/2 20_ -8_ + a/2
2_ -8Z - b/2 2/3

The matrix symbols for Lh and Ltt are again represented by (13) and (14),
but with the elements

Lh(OJ) = 1613(sin2(_ll/2) + sin2(_2/2)) 2 + i(asinO i + b.sin_)
h

j = 1,-.-,4.

The damped Jacobi WR smoother has the matrix symbol (15) with

_(0_, z) - 1 20/3
zw+d(d-_Lh(OJ)), d- h' 0<w_l, j=l,...,4.

Thus, it has exactly the same Fourier smoothing factor (see [18]) as its static

analogue
p_ = max max IS(OJ,z)l = max IS(OJ,O)I

Rez>O 2<j<_4 2_<j<4

4 .: _i_(oi/2)): i •-_(asin_ bsinO_))[.= max Ii-_'(g(sm (_/2)+ + +
2_(j_(4

Let a; = 1/2. Since rr/2 _< 10JI _<_, j = 2,3,4, the Fourier Jacobi WR

smoothing factor satisfies

3 _ lal+lbl 1 when13 lal+lblP_ -< (5) + ( 40fl )2 < > 3----_-

This implies that the Jacobi WR smoother is as effective as the associated

static smoother in eliminating the error with oscillatory modes.

Using the same intergrid operators as in Case 1. the (1, 1)-component of

the matrix symbol of the coarse grid corrector CG (see (7)) for low frequen-

cies, denoted as

01 ---- O_ -- (Ol,Ct2)'_ 0,



can be approximated by

CG(O, Z)l I _, 1
+ Lh(o)

z + LH(2_)

7/3(°12+ a2)2z + i((asin(2al) + bsin(2a2))/2 - (asinal + bsina2))

h(_ + L.(2_))

h(z + LH(2_))

Taking -z to be the imaginary part of LH(2a),

C-G(O, Z)l I _'_
8_(_1_+ _)2

which diverges to oc as a -+ 0 when a0_31+ ba_ _ O. However, for the related

static two grid iteration, z __ 0, one has

7B(a_ + al): - i(aa 3 + bo3)/2

CG(O, z)n _ 8fl(a_ + a_) 2 + i((aal + ba2) - 2(aa_ + ba32)/3)"

As a _ 0, it converges to 0 except in the direction of aol + ba2 = 0. In

this direction, CG(O, Z)n converges to either 7/8 or 6/8 depending upon

whether aa31 + ba32 vanishes.

Since the effectiveness of a coarse grid corrector is strongly influenced by

its action on the error that has very low frequencies, the above observation

indicates that. instead of reducing the error in smooth modes, the coarse

grid corrector in the two grid WR iteration could magnify the error, causing

a divergence of the iterative process. Meanwhile, its static analogue works

well [5].

4 Numerical Results and Conclusions

The numerical experiments were carried out on two case studies discussed

in the previous section. The problems were solved by the two grid Jacobi

WR method over the unit square along 0 <_ t <_ t f, tf = 1 (it has been

found that the dependency of the measured convergence rate on the length

of time interval can be ignored [16]). The space derivatives were discretized

as described in Section 3 with the uniform fine grid size h = 1/64. The initial



guessu(°)wasrandomlygeneratedto exciteall possibleFouriermodes.The
trapezoidalrulewasusedwith stepsize.01for thetimeintegration.In both
cases,the asymptoticratiosof thedefect(see(3))

r(O = maxte[°'t/]lld(hi)(t)ll i= 1,2,.... (16)

maxte[0,t/] Itd  - )(t)ll

were collected and their mean value, denoted by _, was used as an approxi-

mation to the spectral radius p(V).

Tables 3 and 4 list the range of the ratios for Case 1 and 2 respec-

tively. Table 5 lists the defects collected from the experiments in Case 2

with a = b = 1 and/3 = .125, using and without using the multigrid tech-

nique. The results show that, in Case 1, the multigrid technique accelerates

the convergence of the WR iteration in a similar way as it does on static

iteration for the corresponding steady state problem. However, in Case 2,

the multigrid WR process quickly diverges. The results in Table 5 clearly

indicate that it was the coarse grid correction that caused the divergence,

as shown by the previous analysis.

All the numerical data confirm the results obtained by the Fourier-

Laplace analysis. This demonstrates that, for a converging iterative pro-

cess, the analysis provided practical estimates to the actual convergence

rates; while for a diverging iterative process, it was able to locate the source

of divergence, which can be very helpful in searching new directions and

developing better methods for accelerating the WR iteration.
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Table2: SpectralRadiusof Two Grid Red-BlackGauss-SeidelWR (b= 1)

a 3 = .4 fl = .5 fl---.75 fl = 1.

1.0 1.0 (1.0) 1.0 (1.0) .5189 (.5189) .4999 (.4999)

0.5 .8789 (.8789) .5960 (.5960) .4938 (.4882) .4914 (.4886)

0.0 .6574 (.6,339) .5373 (.5133) .4967 (.4257) .4947 (.4119)

/

Table 3: Case 1 (_ = 2/3, a = b = 1)

_'_ _ p(V)
0.50 .5062 --.8465 .6583 .7086

0.75 .5349 - -.7090 .6354 .6072

0.125

0.5

Table 4: Case 2 (w = 1/2, a = b = 1)

r(1) r(2) #3) r(4) r(5) r(6} #7) r(8) r(9) r (lo)

0.9 0.5 1.3 4.1 3.6 4.4 3.7 3.0 2.8 2.3

0.7 0.4 0.7 1.3 2.8 3.0 2.8 2.4 2.0 2.2

Table 5: Case 2: Measured Defect

Method

m_x,_t0,t/] IId_')(0fl
i=3 i=4 i=5 i=6 i=7

Two Grid WR 70.2 286.5 1017.7 4521.0 16512.6

WR 62.6 47.9 41.3 38.7 37.7
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